domingo, abril 10, 2016

El bosón de  Higgs


                            
El primer puesto ha sido para el descubrimiento del bosón de Higgs, que confirma la hipótesis sobre su existencia formulada hace cuarenta años y completa el modelo estándar de la física, aportando una explicación a cómo otras partículas fundamentales obtienen su masa. Este hallazgo se logró mediante el Gran Colisionador de Hadrones (LHC), cuya construcción costó $10.000 millones y se encuentra bajo tierra en la frontera franco-suiza. Con él, se aceleraron partículas como protones hasta casi la velocidad de la luz.   
- la obtención de óvulos a partir de células madre
- la secuencia genómica del hombre de Denisova a partir de un hueso de 80.000 años de antigüedad

- el descubrimiento del fermión de Majorana (una partícula que es, a la vez, su propia antipartícula)

- los progresos en ingeniería genómica que permiten “editar” el ADN de un ser vivo
- la medición de un ángulo de las esquivas partículas conocidas como neutrinos que ayudará a entender por qué el universo contiene tanta materia y tan poca antimateria

- el sistema de descenso del robot Curiosity que explora actualmente Marte
- el proyecto de la Enciclopedia del ADN llamado ENCODE
- los avances en la interacción cerebro-máquina que han permitido a una persona mover extremidades robóticas con el pensamiento

- el desciframiento de estructuras proteínicas del parásito causante de la enfermedad del sueño mediante láser de rayos X.

Para entender el Bosón de Higgs

1. ¿Por qué es tan importante encontrar el bosón de Higgs?

 Porque podría contener la respuesta a la siguiente cuestión: ¿cómo decide la naturaleza a qué partículas les asigna masa y a cuáles no? Todas las partículas elementales que forman la materia (6 leptones y 6 quarks) tienen masa. Sin embargo otras como el protón, responsable de la fuerza electromagnética, no tienen masa. La presencia o ausencia de masa podría venir dada por el bosón de Higgs, cuya existencia se propuso en los años sesenta. “Confirmar la existencia del bosón de Higgs en el modelo estándar supondría haber comprendido el mecanismo por el cual las partículas adquieren masa, un mecanismo que en su versión más simple predice la existencia de –al menos– un bosón que cuando interacciona con las otras partículas (quarks, leptones y otros bosones), hace que estas adquieran masa”, explica Teresa Rodrigo, investigadora del Instituto de Física de Cantabria que participa en los experimentos del CERN.

2. ¿Qué es el campo de Higgs?

 Para explicar por qué unas partículas tienen masa y otras no, el físico británico Peter Higgs (y simultánea pero independientemente, también Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble) postuló en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”. El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una especie de “fricción” con el campo de Higgs, por lo que las partículas más ligeras se moverían por este campo fácilmente mientras que las más pesadas lo harán con mayor dificultad.

3. ¿Quién acuñó el nombre de “partícula de Dios”?

 Fue el Premio Nobel de Fïsica Leon Lederman, en el libro “Si el universo es la respuesta, ¿cuál es la pregunta?”. Sin embargo muchos investigadores prefieren el apodo de "la partícula de la botella de champagne", haciendo alusión a la anécdota según la cual el físico David J. Miller ganó en 1993 una botella de champagne ofrecida por el ministro de ciencia británico William Waldegrave, que la ofreció como “premio” a quien fuese capaz de explicarle que era el bosón de Higgs.

4. ¿Por qué se usa el LHC para buscar el bosón de Higgs?

 La confirmación o refutación de la existencia del bosón de Higgs es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera la Organización Europea para la Investigación Nuclear (CERN) en la frontera francosuiza, cerca de Ginebra (Suiza). En el interior del anillo del acelerador del CERN colisionan protones entre sí a una velocidad cercana a la de la luz. Según los cálculos los bosones de Higgs deberían producirse en choques frontales entre protones de energías del orden de 20 TeV. Al fin y al cabo, cuanto mayor sea la energía de las partículas que chocan más masa tendrán las resultantes, según la famosa ecuación de Einstein E=mc2. No obstante, el bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más habituales (fotones, muones, electrones…) que sí son detectadas en el LHC.

5. ¿Por qué se habla de probabilidades en lugar de hablar de descubrimiento del bosón de Higgs? ¿Qué significan los “sigmas” de los que hablan los físicos?

 El bosón de Higgs no puede observarse directamente porque su tiempo de vida es demasiado corto. Al final de su vida, decae y se transforma en otras partículas que son las que los detectores observan. Por ejemplo, en dos fotones. Pero otros muchos procesos también generan dos fotones, de modo que los científicos tienen que comparar el número de “eventos de dos-fotones” y compararlo con lo que se espera para una determinada partícula.
Para reclamar la paternidad de un descubrimiento, los físicos necesitan tener un exceso de colisiones significativas, lo que precisa de otra magnitud: la desviación estándar o el “número de sigmas”, que establece la significancia estadística de ese descubrimiento. Al hacer el anuncio sobre el bosón de Higgs, Fabiola Gianotti ha dicho: "Hemos observado señales claras de una nueva partícula en el nivel de cinco sigma en la región de la masa alrededor de 126 gigaelectronvoltios (GeV)”. El valor cinco sigma es el nivel mínimo aceptado por la comunidad científica para confirmar el descubrimiento de una partícula, e indica que la probabilidad de que lo que estemos viendo sea fruto del azar es más pequeña que unas pocas partes en diez millones (o que la confianza es del 99,99994%).



http://www.muyinteresante.es/ciencia/articulo/los-diez-hitos-cientificos-de-2012-segun-science








1 comentario:

  1. Este fragmento nos habla de que el bosón de higgs es un fenómeno físico que es difícil de hallar se divide en dos partículas, este lo buscan bastante en la ciencia ya que es difícil de hallar y es de mucha ayuda, para poder hallar se usa (LHC) acelerador de partículas esta hace que la partículas choquen y creen una masa mayor, pero el bosón de higgs es difícil ya que al hacer esto se destruye muy rápido convirtiéndose en otras partículas ( fotones, muones, electrones etc..)

    MANUEL FERNANDO CELY

    NAHED DAVID BELTRAN

    CURSO: 11-02

    ResponderEliminar